# axis='index'或者axis=0 print(frame.sub(series3, axis='index')) # b d e # Utah -1.0 0.0 1.0 # Ohio -1.0 0.0 1.0 # Texas -1.0 0.0 1.0 # Oregon -1.0 0.0 1.0
print(frame.sub(series3, axis=1)) # Ohio Oregon Texas Utah b d e # Utah NaN NaN NaN NaN NaN NaN NaN # Ohio NaN NaN NaN NaN NaN NaN NaN # Texas NaN NaN NaN NaN NaN NaN NaN # Oregon NaN NaN NaN NaN NaN NaN NaN
# se2.csv没有标题行 print(pd.read_csv('ex2.csv')) # a b c d hello # 0 e f g h world # 1 i j k l foo
# 为其自动添加默认的列名 print(pd.read_csv('ex2.csv',header=None)) # 0 1 2 3 4 # 0 a b c d hello # 1 e f g h world # 2 i j k l foo
# 添加自定义列名 names = ('c1 c2 c3 c4 c5').split() print(pd.read_csv('ex2.csv',names=names)) # c1 c2 c3 c4 c5 # 0 a b c d hello # 1 e f g h world # 2 i j k l foo
第7章 数据清洗和准备
map, applymap apply的区别:
map: Series元素级函数映射
applymap: DataFrame元素级函数映射
apply: DataFrame轴级函数映射
第8章 数据规整:聚合、合并和重塑
不能通过传入字典的方式作为index来创建多层索引
1 2 3 4 5 6 7 8
import pandas as pd import numpy as np
# 不能通过传入字典的方式作为index来创建多层索引 data = pd.Series(np.random.randn(9), index={'a':[1,2,3],'b':[1,3],'c':[1,2],'d':[2,3]}) # ValueError: Length of passed values is 9, index implies 4